7,162 research outputs found

    [Fe XIV] and [Fe XI] reveal the forward shock in SNR 1E0102.2-7219

    Full text link
    Aims. We study the forward shock in the oxygen-rich young supernova remnant (SNR) 1E0102.2-7219 (1E0102 in short) via optical coronal emission from [Fe XIV] and [Fe XI]: emission lines which offer an alternative method to X-rays to do so. Methods. We have used the Multi-Unit Spectroscopic Explorer (MUSE) optical integral field spectrograph at the Very Large Telescope (VLT) on Cerro Paranal to obtain deep observations of SNR 1E0102 in the Small Magellanic Cloud. Our observations cover the entire extent of the remnant with a seeing limited spatial resolution of 0.7" = 0.2 pc at the distance of 1E 0102. Results. Our MUSE observations unambiguously reveal the presence of [Fe XIV] and [Fe XI] emission in 1E0102. The emission largely arises from a thin, partial ring of filaments surrounding the fast moving O-rich ejecta in the system. The brightest [Fe XIV] and [Fe XI] emission is found along the eastern and north-western sides of 1E0102, where shocks are driven into denser ISM material, while fainter emission along the northern edge reveals the location of the forward shock in lower density gas, possibly the relic stellar wind cavity. Modeling of the eastern shocks and the photoionization precursor surrounding 1E0102, we derive a pre-shock density nHn_H = (7.4 +-1.5) cm−3^{-3}, and a shock velocity 330 km/s < vsv_s < 350 km/s.Comment: 4 pages, 4 figures, accepted for publications in A&A as a Letter to the Edito

    Determination of pulsation periods and other parameters of 2875 stars classified as MIRA in the All Sky Automated Survey (ASAS)

    Full text link
    We have developed an interactive PYTHON code and derived crucial ephemeris data of 99.4% of all stars classified as 'Mira' in the ASAS data base, referring to pulsation periods, mean maximum magnitudes and, whenever possible, the amplitudes among others. We present a statistical comparison between our results and those given by the AAVSO International Variable Star Index (VSX), as well as those determined with the machine learning automatic procedure of Richards et al. 2012. Our periods are in good agreement with those of the VSX in more than 95% of the stars. However, when comparing our periods with those of Richards et al, the coincidence rate is only 76% and most of the remaining cases refer to aliases. We conclude that automatic codes require still more refinements in order to provide reliable period values. Period distributions of the target stars show three local maxima around 215, 275 and 330 d, apparently of universal validity, their relative strength seems to depend on galactic longitude. Our visual amplitude distribution turns out to be bimodal, however 1/3 of the targets have rather small amplitudes (A << 2.5m^{m}) and could refer to semi-regular variables (SR). We estimate that about 20% of our targets belong to the SR class. We also provide a list of 63 candidates for period variations and a sample of 35 multiperiodic stars which seem to confirm the universal validity of typical sequences in the double period and in the Petersen diagramsComment: 14 pages, 14 figures, and 8 tables. Accepted to The Astrophysical Journal Supplement Series, September 201

    Heavy quark effects on parton distribution functions in the unpolarized virtual photon up to the next-to-leading order in QCD

    Full text link
    We investigate the heavy quark mass effects on the parton distribution functions in the unpolarized virtual photon up to the next-to-leading order in QCD. Our formalism is based on the QCD-improved parton model described by the DGLAP evolution equation as well as on the operator product expansion supplemented by the mass-independent renormalization group method. We evaluate the various components of the parton distributions inside the virtual photon with the massive quark effects, which are included through the initial condition for the heavy quark distributions, or equivalently from the matrix element of the heavy quark operators. We discuss some features of our results for the heavy quark effects and their factorization-scheme dependence.Comment: 16 pages, 16 figures, version to appear in Phys. Rev.

    Target Mass Corrections for the Virtual Photon Structure Functions to the Next-to-next-to-leading Order in QCD

    Full text link
    We investigate target mass effects in the unpolarized virtual photon structure functions F2γ(x,Q2,P2)F_2^\gamma(x,Q^2,P^2) and FLγ(x,Q2,P2)F_L^\gamma(x,Q^2,P^2) in perturbative QCD for the kinematical region Λ2≪P2≪Q2\Lambda^2 \ll P^2 \ll Q^2, where −Q2(−P2)-Q^2(-P^2) is the mass squared of the probe (target) photon and Λ\Lambda is the QCD scale parameter. We obtain the Nachtmann moments for the structure functions and then, by inverting the moments, we get the expressions in closed form for F2γ(x,Q2,P2)F_2^\gamma(x,Q^2,P^2) up to the next-to-next-to-leading order and for FLγ(x,Q2,P2)F_L^\gamma(x,Q^2,P^2) up to the next-to-leading order, both of which include the target mass corrections. Numerical analysis exhibits that target mass effects appear at large xx and become sizable near xmax(=1/(1+P2Q2))x_{\rm max}(=1/(1+\frac{P^2}{Q^2})), the maximal value of xx, as the ratio P2/Q2P^2/Q^2 increases.Comment: 24 pages, LaTeX, 7 eps figures, REVTeX

    Exploring multi-band excitations of interacting Bose gases in a 1D optical lattice by coherent scattering

    Full text link
    We use a coherent Bragg diffraction method to impart an external momentum to ultracold bosonic atoms trapped in a one-dimensional optical lattice. This method is based on the application of a single light pulse, with conditions where scattering of photons can be resonantly amplified by the atomic density grating. An oscillatory behavior of the momentum distribution resulting from the time evolution in the lattice potential is then observed. By measuring the oscillating frequencies, we extract multi-band energy structures of single-particle excitations with zero pseudo-momentum transfer for a wide range of lattice depths. The excitation energy structures reveal the interaction effect through the whole range of lattice depth.Comment: 6 pages, 5 figure

    Shadowing Effects on the Nuclear Suppression Factor, R_dAu, in d+Au Interactions

    Full text link
    We explore how nuclear modifications to the nucleon parton distributions affect production of high transverse momentum hadrons in deuteron-nucleus collisions. We calculate the charged hadron spectra to leading order using standard fragmentation functions and shadowing parameterizations. We obtain the d+Au to pp ratio both in minimum bias collisions and as a function of centrality. The minimum bias results agree reasonably well with the BRAHMS data while the calculated centrality dependence underestimates the data and is a stronger function of p_T than the data indicate.Comment: 18 pages, 3 figures, final version, Phys. Rev. C in pres

    Dynamical Mass Estimates for the Halo of M31 from Keck Spectroscopy

    Get PDF
    The last few months have seen the measurements of the radial velocities of all of the dwarf spheroidal companions to the Andromeda galaxy (M31) using the spectrographs (HIRES and LRIS) on the Keck Telescope. This paper summarises the data on the radial velocities and distances for all the companion galaxies and presents new dynamical modelling to estimate the mass of extended halo of M31. The best fit values for the total mass of M31 are between 7 and 10 x 10^{11} solar masses, depending on the details of the modelling. The mass estimate is accompanied by considerable uncertainty caused by the smallness of the dataset; for example, the upper bound on the total mass is roughly 24 x 10^{11} solar masses, while the lower bound is about 3 x 10^{11} solar masses. These values are less than the most recent estimates of the most likely mass of the Milky Way halo. Bearing in mind all the uncertainties, a fair conclusion is that the M31 halo is roughly as massive as that of the Milky Way halo. There is no dynamical evidence for the widely held belief that M31 is more massive -- it may even be less massive.Comment: In press, The Astrophysical Journal (Letters
    • …
    corecore